3.11.68 \(\int \frac {1}{x^{3/2} (a+b x^2+c x^4)} \, dx\) [1068]

3.11.68.1 Optimal result
3.11.68.2 Mathematica [C] (verified)
3.11.68.3 Rubi [A] (verified)
3.11.68.4 Maple [C] (verified)
3.11.68.5 Fricas [B] (verification not implemented)
3.11.68.6 Sympy [F(-1)]
3.11.68.7 Maxima [F]
3.11.68.8 Giac [F]
3.11.68.9 Mupad [B] (verification not implemented)

3.11.68.1 Optimal result

Integrand size = 20, antiderivative size = 371 \[ \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx=-\frac {2}{a \sqrt {x}}-\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \]

output
-1/2*c^(1/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4)) 
*(1-b/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-b-(-4*a*c+b^2)^(1/2))^(1/4)+1/2*c^(1 
/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(1-b/(- 
4*a*c+b^2)^(1/2))*2^(1/4)/a/(-b-(-4*a*c+b^2)^(1/2))^(1/4)-1/2*c^(1/4)*arct 
an(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(1+b/(-4*a*c+b^2 
)^(1/2))*2^(1/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(1/4)+1/2*c^(1/4)*arctanh(2^(1/ 
4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(1+b/(-4*a*c+b^2)^(1/2)) 
*2^(1/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(1/4)-2/a/x^(1/2)
 
3.11.68.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.09 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.21 \[ \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx=-\frac {\frac {4}{\sqrt {x}}+\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b \log \left (\sqrt {x}-\text {$\#$1}\right )+c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{2 a} \]

input
Integrate[1/(x^(3/2)*(a + b*x^2 + c*x^4)),x]
 
output
-1/2*(4/Sqrt[x] + RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[Sqrt[x] - #1] + c 
*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ])/a
 
3.11.68.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 350, normalized size of antiderivative = 0.94, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {1435, 1704, 25, 1834, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {1}{x \left (c x^4+b x^2+a\right )}d\sqrt {x}\)

\(\Big \downarrow \) 1704

\(\displaystyle 2 \left (\frac {\int -\frac {x \left (c x^2+b\right )}{c x^4+b x^2+a}d\sqrt {x}}{a}-\frac {1}{a \sqrt {x}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (-\frac {\int \frac {x \left (c x^2+b\right )}{c x^4+b x^2+a}d\sqrt {x}}{a}-\frac {1}{a \sqrt {x}}\right )\)

\(\Big \downarrow \) 1834

\(\displaystyle 2 \left (-\frac {\frac {1}{2} c \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \int \frac {2 x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}+\frac {1}{2} c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \int \frac {2 x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{a}-\frac {1}{a \sqrt {x}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (-\frac {c \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \int \frac {x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}+c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \int \frac {x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{a}-\frac {1}{a \sqrt {x}}\right )\)

\(\Big \downarrow \) 827

\(\displaystyle 2 \left (-\frac {c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )+c \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{a}-\frac {1}{a \sqrt {x}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (-\frac {c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )+c \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{a}-\frac {1}{a \sqrt {x}}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (-\frac {c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )+c \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{a}-\frac {1}{a \sqrt {x}}\right )\)

input
Int[1/(x^(3/2)*(a + b*x^2 + c*x^4)),x]
 
output
2*(-(1/(a*Sqrt[x])) - (c*(1 - b/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1/4 
)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b 
^2 - 4*a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4 
*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4))) + c*(1 + 
 b/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4 
*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) - ArcTanh 
[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3 
/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))))/a)
 

3.11.68.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1704
Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_ 
Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1) 
)), x] - Simp[1/(a*d^n*(m + 1))   Int[(d*x)^(m + n)*(b*(m + n*(p + 1) + 1) 
+ c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{ 
a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && 
LtQ[m, -1] && IntegerQ[p]
 

rule 1834
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + 
 (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + 
 (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 
 - (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ 
[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n 
, 0]
 
3.11.68.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.18

method result size
derivativedivides \(-\frac {2}{a \sqrt {x}}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{6} c +\textit {\_R}^{2} b \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 a}\) \(65\)
default \(-\frac {2}{a \sqrt {x}}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{6} c +\textit {\_R}^{2} b \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 a}\) \(65\)
risch \(-\frac {2}{a \sqrt {x}}-\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{6} c +\textit {\_R}^{2} b \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{2 a}\) \(65\)

input
int(1/x^(3/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
-2/a/x^(1/2)-1/2/a*sum((_R^6*c+_R^2*b)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R 
=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.68.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5778 vs. \(2 (289) = 578\).

Time = 1.15 (sec) , antiderivative size = 5778, normalized size of antiderivative = 15.57 \[ \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Too large to display} \]

input
integrate(1/x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
Too large to include
 
3.11.68.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Timed out} \]

input
integrate(1/x**(3/2)/(c*x**4+b*x**2+a),x)
 
output
Timed out
 
3.11.68.7 Maxima [F]

\[ \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )} x^{\frac {3}{2}}} \,d x } \]

input
integrate(1/x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
-2/(a*sqrt(x)) - integrate((c*x^(5/2) + b*sqrt(x))/(a*c*x^4 + a*b*x^2 + a^ 
2), x)
 
3.11.68.8 Giac [F]

\[ \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )} x^{\frac {3}{2}}} \,d x } \]

input
integrate(1/x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
integrate(1/((c*x^4 + b*x^2 + a)*x^(3/2)), x)
 
3.11.68.9 Mupad [B] (verification not implemented)

Time = 14.48 (sec) , antiderivative size = 10573, normalized size of antiderivative = 28.50 \[ \int \frac {1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx=\text {Too large to display} \]

input
int(1/(x^(3/2)*(a + b*x^2 + c*x^4)),x)
 
output
2*atan((((-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5 
*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3 
*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6 
*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(3/4)*(32768*a^15*c^8 - x^(1/2)*( 
-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120 
*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*( 
-(4*a*c - b^2)^5)^(1/2))/(32*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^ 
7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4)*(131072*a^16*c^8 + 4096*a^12*b^8*c^4 
- 49152*a^13*b^6*c^5 + 204800*a^14*b^4*c^6 - 327680*a^15*b^2*c^7)*1i + 204 
8*a^11*b^8*c^4 - 22528*a^12*b^6*c^5 + 83968*a^13*b^4*c^6 - 114688*a^14*b^2 
*c^7)*1i + 256*a^11*b*c^8*x^(1/2))*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 
 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2) 
^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^5*b^8 
+ 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4) - 
 ((-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 
120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2* 
c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96 
*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(3/4)*(32768*a^15*c^8 + x^(1/2)*(-(b^9 + 
 b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^ 
3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*...